If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6t^2+24t=0
a = 6; b = 24; c = 0;
Δ = b2-4ac
Δ = 242-4·6·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24}{2*6}=\frac{-48}{12} =-4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24}{2*6}=\frac{0}{12} =0 $
| (2x+30°)=x | | (x-3)-5=30 | | 6x+8×+2=42 | | 39=28−b | | 24=h+5 | | 19=−37+8x | | 12+16p=36 | | 51a-42=20 | | |-5(x-3)=30 | | 0.89x+63=1.59 | | 14x-22=360 | | 111x-22=22 | | 3^(x+2)=7^(3x) | | 33-6x=21 | | -78=13z | | 25x+4=18 | | 3x/(3x-3)-1/(9x-3)=1 | | -13-9x=-14 | | -1/2(x+4)=2x | | 4x+1=9x-34 | | –x–21=–3(2x–11)–x | | 18(1/3)c=2 | | 15+5a=30 | | 2x+20=3x5 | | 0.2x=1.3-0.9 | | 77/100=60/x | | 43.5+n=62.25 | | 1+4x=11x+25 | | 10+q=11 | | (4x-15)=(12x+5) | | 2^2-x-2^x=-3 | | 4x−8=52 |